A Stochastic Dynamic Local Search Method for Learning Multiple-Valued Logic Networks

نویسندگان

  • Qi Ping Cao
  • Shangce Gao
  • Jianchen Zhang
  • Zheng Tang
  • Haruhiko Kimura
چکیده

In this paper, we propose a stochastic dynamic local search (SDLS) method for Multiple-Valued Logic (MVL) learning by introducing stochastic dynamics into the traditional local search method. The proposed learning network maintains some trends of quick descent to either global minimum or a local minimum, and at the same time has some chance of escaping from local minima by permitting temporary error increases during learning. Thus the network may eventually reach the global minimum state or its best approximation with very high probability. Simulation results show that the proposed algorithm has the superior abilities to find the global minimum for the MVL network learning within reasonable number of iterations. key words: Multiple-Valued Logic, local search, stochastic dynamic, temporary, iteration

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Search with Probabilistic Modeling for Learning Multiple-Valued Logic Networks

This paper proposes a probabilistic modeling learning algorithm for the local search approach to the Multiple-Valued Logic (MVL) networks. The learning model (PMLS) has two phases: a local search (LS) phase, and a probabilistic modeling (PM) phase. The LS performs searches by updating the parameters of the MVL network. It is equivalent to a gradient decrease of the error measures, and leads to ...

متن کامل

A Chaotic Dynamic Local Search Method for Learning Multiple-Valued Logic Networks

As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of the local search method (LS), which is based on the generalized re...

متن کامل

An Improved Local Search Learning Method for Multiple-Valued Logic Network Minimization with Bi-objectives

This paper describes an improved local search method for synthesizing arbitrary Multiple-Valued Logic (MVL) function. In our approach, the MVL function is mapped from its algebraic presentation (sumof-products form) on a multiple-layered network based on the functional completeness property. The output of the network is evaluated based on two metrics of correctness and optimality. A local searc...

متن کامل

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 90-A  شماره 

صفحات  -

تاریخ انتشار 2007